

Α	Course Title & Number	MTH 420 – Abstract Algebra II						
В	Pre/Co-requisite(s)	Prerequisites: MTH 320 (Abstract Algebra I)						
С	Number of credits	3						
D	Faculty Name	Ayman Badawi						
Е	Term/ Year	Spring 2018						
F	Sections							
		CRN	Course	Days	Time	e	Location	
		Abstract Algebra II1	MTH420	M. W	12:30-1	13:45	PHY 108	_
		Location (ubject to char	,				
		* Location subject to enange						
G	Instructor Information	Instructor	Office	Tele	phone		Email	
	mornation	Ayman Badawi	Nab 262			abad	awi@aus.edu	
		Office hours: M, W :	14—14:50 au	nd T (Tuesc	lay): 151	5:50 (oth	ners by appointn	nent, just
		EMAIL me for an appo	intment)	tiont rings	wationt fiel	de ring h	omomorphism	
H Course Description isomorphism, factorization of polynomials, unique factorization dom				on domai	ins, finite fields,	and field		
	from Catalog extensions, in particular, cyclotomic field extensions and Galois's					ois's theo	ory. If time allow	rs,, Sylow
		theorems.						
I	Course Learning	Upon completion of the course, students will be able to:						
	Outcomes	1. Understand the concept of prime, primary, and maximal ideals.						
		2. Construct ring homomorphisms and isomorphisms						
		4. Understand the concept of unique factorization domains						
		5. Construct finite fields, cyclotomic fields, and splitting–field extensions for an						
		irreducible polynomial						
		6. Understand the fundamental theorem of Galois's theory and its applications.						
	Textbook and	Class notes. Materials on I-learn and my personal webpage						
,	other Instructional							
	Material and	(Optional) Contemporary Abstract Algebra (any edition), by Joseph A. Gallian.						
	Resources	Publisher: Houghton M	iffiin Company					
К	Teaching and	Lectures						
	Learning	Learning						
	wethodologies	Grading Distribution						
L	Grading Scale,							
	Distribution. and	Assessment			Weight		Due Date	
	Due Dates	Quizzes and/or Homework 20% TBA					TBA	
		First Midterm			22.5%		TBA	
		Second Midterm			22.5%	Compr	IBA	lav
		Final Exam (Compre	hensive)		35%	May	12 @ 8am-10an	n
		Total 100%						

М	Explanation of Assessments	Homework sets, two midterms and a final exam.	
		Tests and other graded assignments due dates are set. No addendum, make- up exams, or extra assignments to improve grades will be given.	
N	Student Academic Integrity Code Statement	All students are expected to abide by the Student Academic Integrity Code as articulated in the AUS undergraduate catalog.	

SCHEDULE

WEEK Number	CHAPTER
1	Definition of rings and fields, subrings, ideals, examples
2	Prime ideals, primary ideals, maximal ideals, radical ideals
3	More on ideals and product of rings
4	Prime elements and irreducible elements
5	Unique factorization domains, Euclidean domains
6	Integral domains and their quotient fields, Quotient rings
7	Irreducible polynomials over domains and fields
8	Homomorphism of rings
9	Homomorphism and isomorphism of rings
	Fall Break
10	Finite fields and irreducible polynomials
11	Field extensions
12	Introduction to Galois's theory
13	Splitting fields, Separable fields
14	Cyclotomic fields
15	Reviews